CDKN2B Regulates TGFβ Signaling and Smooth Muscle Cell Investment of Hypoxic Neovessels.
نویسندگان
چکیده
RATIONALE Genetic variation at the chromosome 9p21 cardiovascular risk locus has been associated with peripheral artery disease, but its mechanism remains unknown. OBJECTIVE To determine whether this association is secondary to an increase in atherosclerosis, or it is the result of a separate angiogenesis-related mechanism. METHODS AND RESULTS Quantitative evaluation of human vascular samples revealed that carriers of the 9p21 risk allele possess a significantly higher burden of immature intraplaque microvessels than carriers of the ancestral allele, irrespective of lesion size or patient comorbidity. To determine whether aberrant angiogenesis also occurs under nonatherosclerotic conditions, we performed femoral artery ligation surgery in mice lacking the 9p21 candidate gene, Cdkn2b. These animals developed advanced hindlimb ischemia and digital autoamputation, secondary to a defect in the capacity of the Cdkn2b-deficient smooth muscle cell to support the developing neovessel. Microarray studies identified impaired transforming growth factor β (TGFβ) signaling in cultured cyclin-dependent kinase inhibitor 2B (CDKN2B)-deficient cells, as well as TGFβ1 upregulation in the vasculature of 9p21 risk allele carriers. Molecular signaling studies indicated that loss of CDKN2B impairs the expression of the inhibitory factor, SMAD-7, which promotes downstream TGFβ activation. Ultimately, this manifests in the upregulation of a poorly studied effector molecule, TGFβ1-induced-1, which is a TGFβ-rheostat known to have antagonistic effects on the endothelial cell and smooth muscle cell. Dual knockdown studies confirmed the reversibility of the proposed mechanism, in vitro. CONCLUSIONS These results suggest that loss of CDKN2B may not only promote cardiovascular disease through the development of atherosclerosis but may also impair TGFβ signaling and hypoxic neovessel maturation.
منابع مشابه
Endothelial Mesenchymal Transition in Hypoxic Microvascular Endothelial Cells and Paracrine Induction of Cardiomyocyte Apoptosis Are Mediated via TGFβ1/SMAD Signaling
Cardiac remodeling plays a crucial role in the development of heart failure after mycocardial infarction. Besides cardiomyocytes, endothelial cells are recognized to contribute to cardiac remodeling. We now investigated processes of endothelial mesenchymal transition (EndoMT) in microvascular endothelial cells of rat (MVEC) under hypoxia and paracrine effects on ventricular cardiomyocytes of ad...
متن کاملTGFβ Signaling-mediated MicroRNA Regulation in Vascular Smooth Muscle Cells
The discovery of small noncoding microRNAs (miRNAs) increases the complexity of gene expression regulatory mechanisms. The basic mechanism of miRNA biogenesis and regulatory functions of target genes have been widely elucidated. Recently, it has been recognized that regulation of each step of miRNA biogenesis is critical for generating functional miRNAs. Interestingly, cell signaling pathways, ...
متن کاملMicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells.
RATIONALE MicroRNA miR145 has been implicated in vascular smooth muscle cell differentiation, but its mechanisms of action and downstream targets have not been fully defined. OBJECTIVE Here, we sought to explore and define the mechanisms of miR145 function in smooth muscle cells. METHODS AND RESULTS Using a combination of cell culture assays and in vivo mouse models to modulate miR145, we c...
متن کاملFibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation
Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins ("contractile phenotype"). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression...
متن کاملSmooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression
The conversion of vascular smooth muscle cells (SMCs) from contractile to proliferative phenotype is thought to play an important role in atherosclerosis. However, the contribution of this process to plaque growth has never been fully defined. In this study, we show that activation of SMC TGFβ signaling, achieved by suppression of SMC fibroblast growth factor (FGF) signaling input, induces thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 118 2 شماره
صفحات -
تاریخ انتشار 2016